Product Code Database
Example Keywords: skirt -ps3 $36-181
   » » Wiki: Mixed Volume
Tag Wiki 'Mixed Volume'.
Tag
In , more specifically, in , the mixed volume is a way to associate a non-negative number to a tuple of in \mathbb{R}^n. This number depends on the size and shape of the bodies, and their relative orientation to each other.


Definition
Let K_1, K_2, \dots, K_r be convex bodies in \mathbb{R}^n and consider the function

f(\lambda_1, \ldots, \lambda_r)
= \mathrm{Vol}_n (\lambda_1 K_1 + \cdots + \lambda_r K_r), \qquad \lambda_i \geq 0,

where \text{Vol}_n stands for the n-dimensional volume, and its argument is the of the scaled convex bodies K_i. One can show that f is a homogeneous polynomial of degree n, so can be written as

f(\lambda_1, \ldots, \lambda_r)
= \sum_{j_1, \ldots, j_n = 1}^r V(K_{j_1}, \ldots, K_{j_n})
  \lambda_{j_1} \cdots \lambda_{j_n},  
     

where the functions V are symmetric. For a particular index function j \in \{1,\ldots,r\}^n , the coefficient V(K_{j_1}, \dots, K_{j_n}) is called the mixed volume of K_{j_1}, \dots, K_{j_n}.


Properties
  • The mixed volume is uniquely determined by the following three properties:
V(K, \dots, K) =\text{Vol}_n (K);
  1. V is symmetric in its arguments;
  2. V is multilinear:
V(\lambda K + \lambda' K', K_2, \dots, K_n) = \lambda V(K, K_2, \dots, K_n) + \lambda' V(K', K_2, \dots, K_n) for \lambda,\lambda' \geq 0.

  • The mixed volume is non-negative and monotonically increasing in each variable:
V(K_1, K_2, \ldots, K_n) \leq V(K_1', K_2, \ldots, K_n) for K_1 \subseteq K_1'.
  • The Alexandrov–Fenchel inequality, discovered by Aleksandr Danilovich Aleksandrov and :

: V(K_1, K_2, K_3, \ldots, K_n) \geq \sqrt{V(K_1, K_1, K_3, \ldots, K_n) V(K_2,K_2, K_3,\ldots,K_n)}.

Numerous geometric inequalities, such as the Brunn–Minkowski inequality for convex bodies and Minkowski's first inequality, are special cases of the Alexandrov–Fenchel inequality.


Quermassintegrals
Let K \subset \mathbb{R}^n be a convex body and let B = B_n \subset \mathbb{R}^n be the Euclidean ball of unit radius. The mixed volume

W_j(K) = V(\overset{n-j \text{ times}}{\overbrace{K,K, \ldots,K}}, \overset{j \text{ times}}{\overbrace{B,B,\ldots,B}})

is called the j-th quermassintegral of K.

The definition of mixed volume yields the Steiner formula (named after ):

\mathrm{Vol}_n(K + tB)
= \sum_{j=0}^n \binom{n}{j} W_j(K) t^j.
     


Intrinsic volumes
The j-th intrinsic volume of K is a different normalization of the quermassintegral, defined by

V_j(K) = \binom{n}{j} \frac{W_{n-j}(K)}{\kappa_{n-j}}, or in other words \mathrm{Vol}_n(K + tB) = \sum_{j=0}^n V_j(K)\, \mathrm{Vol}_{n-j}(tB_{n-j}) = \sum_{j=0}^n V_j(K)\,\kappa_{n-j}t^{n-j}.

where \kappa_{n-j} = \text{Vol}_{n-j} (B_{n-j}) is the volume of the (n-j)-dimensional unit ball.


Hadwiger's characterization theorem
Hadwiger's theorem asserts that every valuation on convex bodies in \mathbb{R}^n that is continuous and invariant under rigid motions of \mathbb{R}^n is a linear combination of the quermassintegrals (or, equivalently, of the intrinsic volumes).


Notes

External links
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs